www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - uneigentliche integrale
uneigentliche integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliche integrale: integrationsgrenzen
Status: (Frage) beantwortet Status 
Datum: 21:38 Mi 04.04.2007
Autor: pumpernickel

Aufgabe
[mm] \integral_{-\infty}^{\infty}{f(x) dx} [/mm] = [mm] \integral_{0}^{\infty}{f(x) dx} [/mm] +  [mm] \integral_{-\infty}^{0}{f(x) dx} [/mm] = 2 [mm] \integral_{0}^{\infty}{f(x) dx} [/mm] =  2 [mm] \integral_{-\infty}^{0}{f(x) dx} [/mm]

das ist meine vermutung.kann jemand netterweise bestätigen oder widerlegen?

        
Bezug
uneigentliche integrale: nicht allgemeingültig
Status: (Antwort) fertig Status 
Datum: 21:55 Mi 04.04.2007
Autor: Loddar

Hallo Pumpernickel!


Diese Behauptung ist nicht allgemeingültig. Sie gilt aber z.B. bei Funktionen $f(x)_$ , die achsensymmetrisch zur y-Achse sind.


Gruß
Loddar


Bezug
                
Bezug
uneigentliche integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 Mi 04.04.2007
Autor: pumpernickel

Aufgabe
  [mm] \integral_{-\infty}^{\infty}{f(x) dx} [/mm]  =  [mm] \integral_{0}^{\infty}{f(x) dx} [/mm]  +   [mm] \integral_{-\infty}^{0}{f(x) dx} [/mm]

danke,klingt logisch.ist zumindest diese behauptung hier allgemeingültig?

Bezug
                        
Bezug
uneigentliche integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Mi 04.04.2007
Autor: Kroni

Hi,

das kannst du ja für jede Fläche machen, dass du diese Aufteilst, und dann die Flächen addierst.
Das kann man ja auch mal zeigen:

Nehmen wir an, f(x) sei eine über [mm] \IR [/mm] integrierbare Funktion, und es gelte F'(x)=f(x).

Dann gilt:

[mm] \integral_{-\infty}^{\infty}{f(x) dx}=F(\infty)-F(-\infty) [/mm]
(ich weiß nicht genau, ob man das so schreiben darf, aber ich denke, du weist, was gemeint ist).

=> [mm] \integral_{-\infty}^{0}{f(x) dx}+\integral_{0}^{\infty}{f(x) dx}= F(0)-F(-\infty)+F(\infty)-F(0)=F(\infty)-F(-\infty)=\integral_{-\infty}^{\infty}{f(x) dx} [/mm] q.e.d

Liebe Grüße,

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]