www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - triJordanschen Normal form
triJordanschen Normal form < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

triJordanschen Normal form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 Mi 11.05.2011
Autor: Nadia..

Aufgabe
Ich versteh den Satz hier nicht:

Der größte Jordan-Block zu einem [mm] $\delta \in [/mm] Spec.f$ ist ein [mm] $\gamma_\delta \times \gamma_\delta [/mm] $ Block.

Viele Größe

Nadia

        
Bezug
triJordanschen Normal form: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Do 12.05.2011
Autor: angela.h.b.


> Ich versteh den Satz hier nicht:
>  
> Der größte Jordan-Block zu einem [mm]\delta \in Spec.f[/mm]
> ist
> ein [mm] $\gamma_\delta \times \gamma_\delta$ [/mm] Block.

Hallo,

ein bißchen Gesamtzusammenhang, in welchem vor allem auch die Variablen erklärt werden, wäre ja echt nicht übel...

Aber da ich ein wenig hellsehen kann:

wenn [mm] \delta [/mm] ein Eigenwert ist, und [mm] \gamma_{delta} [/mm] die Vielfachheit der Nullstelle [mm] \delta [/mm] im Minimalpolynom, dann ist der größte Jordanblock zu [mm] \delta [/mm] ein [mm] \gamma_{delta}\times\gamma_{delta}-Block. [/mm]

Eventuell habt Ihr aber [mm] \gamma_{delta} [/mm] auch im Zusammenhang mit den aufsteigenden Kernen verwendet?


Beispiel: es ist 7 Eigenwert einer [mm] 50\times [/mm] 50-Matrix A.

Das Minimalpolynom von A sei [mm] \mu_A(x)=( x-7)^{5}(x-13)(x-91)^{19}. [/mm]

Dann ist der größte Jordanblock zu Eigenwert 7 ein [mm] 5\times [/mm] 5-Block.

Gruß v. Angela











Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]