www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - nicht reflexive Räume
nicht reflexive Räume < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nicht reflexive Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:18 Mi 18.04.2007
Autor: dena

Aufgabe
Keiner der Räume [mm] l^{\infty}, [/mm] C[0,1], [mm] L^{1}[0,1] [/mm] und [mm] L^{\infty}[0,1] [/mm] sind reflexiv.  

Halli hallo!

Für die ersten 2 Räume habe ich den Beweis erbracht. Nun happerts ein bisschen..

Es ist ja [mm] L^{\infty} [/mm] der zu [mm] L^{1} [/mm] duale Raum, d.h. [mm] (L^{1}[0,1])^{*} [/mm] =  [mm] (L^{\infty}[0,1]). [/mm] Und [mm] L^{\infty}[0,1]) [/mm] ist nur dann reflexiv, wenn [mm] L^{1}[0,1] [/mm] reflexiv ist. Aber [mm] L^{1} [/mm] ist nicht reflexiv.

Stimmt das so oder habe ich da was falsch verstanden und wie kann ich zeigen, dass [mm] L^{1} [/mm] nicht reflexiv ist?

danke und lg
kalinka



        
Bezug
nicht reflexive Räume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mo 23.04.2007
Autor: dena

hallo!

bis jetzt hat mir leider noch niemand geholfen, aber vielleicht klappt es ja jetzt!? wäre froh!

danke und liebe grüße

Bezug
        
Bezug
nicht reflexive Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 03:58 Di 24.04.2007
Autor: MatthiasKr

Hallo kalinka,

> Keiner der Räume [mm]l^{\infty},[/mm] C[0,1], [mm]L^{1}[0,1][/mm] und
> [mm]L^{\infty}[0,1][/mm] sind reflexiv.
> Halli hallo!
>  
> Für die ersten 2 Räume habe ich den Beweis erbracht. Nun
> happerts ein bisschen..
>  
> Es ist ja [mm]L^{\infty}[/mm] der zu [mm]L^{1}[/mm] duale Raum, d.h.
> [mm](L^{1}[0,1])^{*}[/mm] =  [mm](L^{\infty}[0,1]).[/mm] Und [mm]L^{\infty}[0,1])[/mm]
> ist nur dann reflexiv, wenn [mm]L^{1}[0,1][/mm] reflexiv ist. Aber
> [mm]L^{1}[/mm] ist nicht reflexiv.
>  
> Stimmt das so oder habe ich da was falsch verstanden und
> wie kann ich zeigen, dass [mm]L^{1}[/mm] nicht reflexiv ist?
>  

also, wenn du zeigst, dass einer der beiden raeume [mm] $L^1$ [/mm] und [mm] $L^\infty$ [/mm] nicht reflexiv ist, reicht das, das ist klar.
allerdings ist dieser beweis, zb. fuer [mm] $L^1$, [/mm] glaube ich ziemlich technisch und nicht gerade trivial. Ich denke, du faehrst am besten, wenn du das in einem standardbuch, wie 'Lineare FA' von H.W. Alt, nachschlaegst und gut durcharbeitest.

VG
Matthias






> danke und lg
> kalinka
>  
>  


Bezug
                
Bezug
nicht reflexive Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:00 Di 24.04.2007
Autor: dena

Hallo Matthias!

Danke! Dieses Buch habe ich eh gerade bei der Hand..
Der Beweis für [mm] L^{\infty}[0,1] [/mm] wird wohl gleich technisch sein wie der für [mm] L^{1}? [/mm]

liebe grüße!!

Bezug
                        
Bezug
nicht reflexive Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 03:27 Mi 25.04.2007
Autor: MatthiasKr


> Hallo Matthias!
>  
> Danke! Dieses Buch habe ich eh gerade bei der Hand..
>  Der Beweis für [mm]L^{\infty}[0,1][/mm] wird wohl gleich technisch
> sein wie der für [mm]L^{1}?[/mm]
>  

vernutlich, ja. Wenn du das buch eh bei der hand hast, kannst du es ja nachschauen. ;-)

VG
Matthias

> liebe grüße!!


Bezug
                                
Bezug
nicht reflexive Räume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:40 Mi 25.04.2007
Autor: dena

mach ich, vielen dank! ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]