www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Transformationen" - e^at Laplacetransformation
e^at Laplacetransformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

e^at Laplacetransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:12 So 21.12.2008
Autor: Rutzel

Hallo,

ich habe eine Frage zur Laplacetransformation von [mm] e^{at}, [/mm] welche bekanntlich [mm] \frac{1}{s-a} [/mm] ist:

[mm] L(e^a)=\integral_{0}^{\infty}{e^{at} e^{-st} dt} [/mm]
[mm] =\integral_{0}^{\infty}{e^{at-st} dt} [/mm]
[mm] =\integral_{0}^{\infty}{e^{(a-s)t} dt} [/mm]
= [mm] \frac{1}{s-a} [/mm]

Das Letzte Gleichheitszeichen gilt doch aber nur, wenn (a-s) < 0 ist. Setzt man dies immer stillschweigen vorraus? (weil in jeder Formelsammlung dies als die gültige Laplacetransformation angegeben wird.)

Gruß,
Rutzel

        
Bezug
e^at Laplacetransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 10:01 Mo 22.12.2008
Autor: pelzig


> Hallo,
>  
> ich habe eine Frage zur Laplacetransformation von [mm]e^{at},[/mm]
> welche bekanntlich [mm]\frac{1}{s-a}[/mm] ist:
>  
> [mm]L(e^a)=\integral_{0}^{\infty}{e^{at} e^{-st} dt}[/mm]
>  
> [mm]=\integral_{0}^{\infty}{e^{at-st} dt}[/mm]
>  
> [mm]=\integral_{0}^{\infty}{e^{(a-s)t} dt}[/mm]
>  = [mm]\frac{1}{s-a}[/mm]
>  
> Das Letzte Gleichheitszeichen gilt doch aber nur, wenn
> (a-s) < 0 ist. Setzt man dies immer stillschweigen vorraus?
> (weil in jeder Formelsammlung dies als die gültige
> Laplacetransformation angegeben wird.)

Hallo,

Du hast vollkommen recht, obiges Integral existiert für $s<a$ nicht, für s=a kommt 0 raus. Ich kenne mich zwar nicht wirklich damit aus, insbesondere weiß ich nicht wie Physiker oder Ingenieure  damit umgehen, aber exakt müsste man sagen: "Die Laplace-Transormation von [mm]e^{ax}[/mm] an der Stelle s existiert für [mm]s\ge a[/mm] und es gilt [mm] $$\mathcal{L}\{e^{ax}\}(s)=\begin{cases}0&\text{für }s=a\\\frac{1}{s-a}&\text{sonst}\end{cases}$$Insbesondere [/mm] ist die Laplcae Transformierte auf ihrem größtmöglichen Definitionsbereich nicht stetig.

Ich vermute man setzt immer stillschweigend voraus, dass man nur solche s betrachtet, an denen die Laplacetransformierte auch existiert. Der Fall $s=a$ ist dann halt Schlamperei.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]