www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Transformationssatz
Transformationssatz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationssatz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:00 Mi 27.11.2013
Autor: papilio

Aufgabe
Sei [mm] \nu [/mm] das Dichtemaß einer N(0,1)-Verteilung bezüglich [mm] \lambda^1, [/mm] also [mm] \nu=f \lambda^1 [/mm] mit
f(x)= [mm] \bruch{1}{\wurzel{2\pi}} exp(\bruch{-x^2}{2}) [/mm]

Bestimmen Sie die Dichte [mm] T(\nu) [/mm] unter der Transformation T: [mm] \IR [/mm] -> [mm] \IR, t->t^2 [/mm]

Hallo,

oben befindet sich meine Aufgabe.

Ich habe im Skript einen Transformationssatz für Dichten, welchen ich aber nicht anwenden kann...
Er lautet:

[mm] (\Omega, [/mm] A, [mm] \mu) [/mm] Maßraum, T: [mm] \Omega->\Omega [/mm] bijektiv
T und [mm] T^{-1} [/mm] (A-)messbar
[mm] \nu=f\mu [/mm] mit [mm] f\in [/mm] E^* Dichtmaß
Dann gilt: [mm] T(\nu) [/mm] = [mm] T(f\mu)= (f\circ T^{-1})T(\mu) [/mm]

Aber mein T ist nicht bijektiv.

Ich habe keine andere Idee zu dieser Aufgabe. Es wäre super, wenn mir jmd. einen Tipp geben könnte.


Grüße von papilio


        
Bezug
Transformationssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Mi 27.11.2013
Autor: luis52

Moin, ich bin kein Masstheoretiker, aber ich verstehe die Aufgabe so, dass die Verteilung von [mm] $X^2$ [/mm] zu bestimmen ist, wenn $X$ standardnormalverteilt ist.

Was bedeutet [mm] $(X^2\le [/mm] y)$  fuer $X$?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]