www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Separables Polynom
Separables Polynom < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Separables Polynom: Beweisidee
Status: (Frage) beantwortet Status 
Datum: 12:04 Mi 11.04.2012
Autor: tinakru

Aufgabe
Sei K ein Körper, f [mm] \in [/mm] K[X] ein nichtkonstantes Polynom und f' die Ableitung von f und ggT(f,f') = 1.
Zeige:
f ist separabel.

Moin zusammen,

ich hätte wieder mal ne kleine Frage. Habe auch schon etwas vorgearbeitet. Vielleicht reichts ja sogar schon.

Da ggT(f,f') = 1 ist, haben f und f' keine gemeinsamen Faktoren. Insbesondere haben also f und f' keine gemeinsamen Nullstellen. Hätte nämlich f eine doppelte oder mehrfache Nullstelle, so wäre diese auch Nullstelle von f'.

Demzufolge folgt, dass f nur einfache Nullstellen besitzt.
Also ist f separabel.


Ich würde gerne wissen, ob das reicht als Begründung. Das war eine Klausuraufgabe von uns, und ich kann ehrlich gesagt nicht glauben, dass das wirklich so einfach gewesen ist^^ :-)

Danke schonmal

LG
Tina



        
Bezug
Separables Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 14:00 Mi 11.04.2012
Autor: felixf

Moin Tina!

> Sei K ein Körper, f [mm]\in[/mm] K[X] ein nichtkonstantes Polynom
> und f' die Ableitung von f und ggT(f,f') = 1.
>  Zeige:
>  f ist separabel.
>
> ich hätte wieder mal ne kleine Frage. Habe auch schon
> etwas vorgearbeitet. Vielleicht reichts ja sogar schon.
>  
> Da ggT(f,f') = 1 ist, haben f und f' keine gemeinsamen
> Faktoren. Insbesondere haben also f und f' keine
> gemeinsamen Nullstellen. Hätte nämlich f eine doppelte
> oder mehrfache Nullstelle, so wäre diese auch Nullstelle
> von f'.
>
> Demzufolge folgt, dass f nur einfache Nullstellen besitzt.
>  Also ist f separabel.
>  
>
> Ich würde gerne wissen, ob das reicht als Begründung.

Das haengt arg davon ab, wie die Definitionen genau aussehen bei euch und was genau du verwenden kannst. Vielleicht sollst du die Aussage "$f$ und $f'$ haben keine gemeinsamen Faktoren [mm] $\Rightarrow [/mm] f$ hat keine doppelte Nullstelle (in einem Erweiterungskoerper)" hier auch zeigen, also genauer: $f$ und $f'$ haben gemeinsamen Faktor impliziert dass $f$ diesen Faktor doppelt hat.

(Ist aber auch nicht schwer nachzurechnen...)

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]