www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Schnittpunkt stetiger Funktion
Schnittpunkt stetiger Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittpunkt stetiger Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:02 So 12.12.2010
Autor: Lilium

Aufgabe
a.) Sei [a,b] [mm] \subset \IR [/mm] ein abgeschlossenes Intervall und f,g : [a,b] [mm] \to \IR [/mm] seien zwei stetige Funktionen mit

f(a) > g(a)    f(b) < g(b)

Man beweise, dass es ein [mm] x_{0} \in [/mm] [a,b] mit [mm] f(x_{0}) [/mm] = [mm] g(x_{0}) [/mm] gibt.

b.) Sei f: [a,b] [mm] \to \IR [/mm] eine stetige Funktion. Dann gibt es zu jedem [mm] \varepsilon [/mm] > 0 Treppenfunktionen [mm] \partial, \nu [/mm] : [a,b] [mm] \to \IR [/mm] mit folgenden Eigenschaften:

[mm] \partial(x) \le [/mm] f(x) [mm] \le \nu(x) [/mm] für alle x [mm] \in [/mm] [a,b]

| [mm] \partial(x) [/mm] - [mm] \nu(x) [/mm] | [mm] \le \varepsilon [/mm] für alle x [mm] \in [/mm] [a,b]

Hallo zusammen,

Für a.) denke ich, dass man die Aufgabe mit einem Wiederspruchsbeweis lösen könnte:
Ich dachte mir, man könnte annehmen, dass es kein [mm] x_{0} [/mm] gibt, für das f( [mm] x_{0}) [/mm] = g( [mm] x_{0}) [/mm] gilt.

Dann würde ja f(a) [mm] \to [/mm] z
und g(a) [mm] \to [/mm] y  mit y [mm] \not= [/mm] z.

Weil ja f(a) > g(a) muss auch z [mm] \ge [/mm] y gelten.

Andersherum ist dann ja

                            f(b) [mm] \to [/mm]  z
und                     g(b) [mm] \to [/mm] y  mit y [mm] \not= [/mm] z

Weil f(b) < g(b) ist auch z [mm] \le [/mm] y und das ist ein Wiederspruch, weil diese Aussage nur gültig ist, wenn y=z . Aber dann existiert ja ein Schnittpunkt.


Soweit zu meinem Lösungsansatz, aber ich möchte gerne wissen, wie das formal zu beweisen ist. Vielleicht kann mir ja jemand einen Tipp geben?


Teilaufgabe b.)  verstehe ich leider nicht. Es wäre schön, wenn mir jemand erklären könnte, was ich da machen muss.

Vielen Dank im Voraus und einen frohen 3. Advent,

Lilium

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Schnittpunkt stetiger Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 So 12.12.2010
Autor: fred97


> a.) Sei [a,b] [mm]\subset \IR[/mm] ein abgeschlossenes Intervall und
> f,g : [a,b] [mm]\to \IR[/mm] seien zwei stetige Funktionen mit
>  
> f(a) > g(a)    f(b) < g(b)
>  
> Man beweise, dass es ein [mm]x_{0} \in[/mm] [a,b] mit [mm]f(x_{0})[/mm] =
> [mm]g(x_{0})[/mm] gibt.
>  
> b.) Sei f: [a,b] [mm]\to \IR[/mm] eine stetige Funktion. Dann gibt
> es zu jedem [mm]\varepsilon[/mm] > 0 Treppenfunktionen [mm]\partial, \nu[/mm]
> : [a,b] [mm]\to \IR[/mm] mit folgenden Eigenschaften:
>  
> [mm]\partial(x) \le[/mm] f(x) [mm]\le \nu(x)[/mm] für alle x [mm]\in[/mm] [a,b]
>  
> | [mm]\partial(x)[/mm] - [mm]\nu(x)[/mm] | [mm]\le \varepsilon[/mm] für alle x [mm]\in[/mm]
> [a,b]
>  Hallo zusammen,
>  
> Für a.) denke ich, dass man die Aufgabe mit einem
> Wiederspruchsbeweis lösen könnte:
> Ich dachte mir, man könnte annehmen, dass es kein [mm]x_{0}[/mm]
> gibt, für das f( [mm]x_{0})[/mm] = g( [mm]x_{0})[/mm] gilt.
>
> Dann würde ja f(a) [mm]\to[/mm] z
> und g(a) [mm]\to[/mm] y  mit y [mm]\not=[/mm] z.
>
> Weil ja f(a) > g(a) muss auch z [mm]\ge[/mm] y gelten.
>
> Andersherum ist dann ja
>
> f(b) [mm]\to[/mm]  z
> und                     g(b) [mm]\to[/mm] y  mit y [mm]\not=[/mm] z
>
> Weil f(b) < g(b) ist auch z [mm]\le[/mm] y und das ist ein
> Wiederspruch, weil diese Aussage nur gültig ist, wenn y=z
> . Aber dann existiert ja ein Schnittpunkt.

Alles was grün ist, ist kompletter Unsinn und ich habe keine Lust, auf Einzelheiten einzugehen.

Tipp: betrachte h:=f-g und denke an den Zwischenwertsatz


>  
> Soweit zu meinem Lösungsansatz, aber ich möchte gerne
> wissen, wie das formal zu beweisen ist. Vielleicht kann mir
> ja jemand einen Tipp geben?
>  
>
> Teilaufgabe b.)  verstehe ich leider nicht. Es wäre
> schön, wenn mir jemand erklären könnte, was ich da
> machen muss.

Es steht klar und deutlich da, was zu tun ist. Was verstehst Du nicht ?

FRED

>  
> Vielen Dank im Voraus und einen frohen 3. Advent,
>  
> Lilium
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]