www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Schnittgerade, Ebenen
Schnittgerade, Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnittgerade, Ebenen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:01 Mi 29.08.2007
Autor: janaina

Aufgabe
Gib eine Ebene E2 an, die ebenfalls g enthält, sodass g Schnittgerade von E1 und E2 ist.

g: x= (1/1/-1) + [mm] \lambda [/mm] (1/-1/-1)

E1: x1+2x2-x3 = 4

ICh soll 3 Aufgaben dieses Typs rechnen und wäre euch sehr dankbar, wenn ihr mir den Rechenweg zeigen/erläutern könntet.
Lieben Gruß!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Schnittgerade, Ebenen: Hinweise
Status: (Antwort) fertig Status 
Datum: 17:08 Mi 29.08.2007
Autor: Loddar

Hallo janaina!


Für eine eindeutige Ebenengleichung benötigst Du z.B. einen Punkt sowie zwei Richtungsvektoren.

Einen Punkt und einen Richtungsvektor hast Du durch die Geradengleichung direkt gegeben.

Als zweiten Richtungsvektor kannst Du Dir z.B. den Normalenvektor der gegebenen Ebene hernehmen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]