www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Krypto,Kodierungstheorie,Computeralgebra" - RSA - Verfahren
RSA - Verfahren < Krypt.+Kod.+Compalg. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

RSA - Verfahren: Korrektur+Tipp
Status: (Frage) beantwortet Status 
Datum: 12:35 Mi 24.10.2012
Autor: susiii

hallo :)

Ich schreibe mein Seminararbeit über Primzahlen, darunter auch, als praktische Anwendung, ein Kapitel über das RSA-Verfahren. Nun habe ich versucht, dass RSA-Verfahren an einfachen Zahlen auszuprobieren. Doch ich komme bei der Berechnung des Dechiffrierschlüssels nicht weiter.
Bisher habe ich gerechnet:
zwei Primzahlen p = 7 und q = 11
daraus folgt n= p*q= 77 und phi(n) = 60
außerdem  a=8 festgelegt
verschlüsselt soll die zahl x= 12 werde
-> y= [mm] x^{a} [/mm] (mod n)  
   y= [mm] 12^{8} [/mm] (mod 77)  
   y= 61
Stimmen meine Berechnungen bisher?
nun soll der Dechiffrierschlüssel bestimmt werden mit:
ab (mod m) = 1
b= [mm] \bruch{1+k*m}{a} [/mm]
b= [mm] \bruch{1+k*60}{8} [/mm]
wobei k [mm] \in \IN [/mm] und so gewählt werden muss, dass auch b [mm] \in \IN. [/mm]
Hier stehe ich auf dem schlauch. Wie kann k berechnet werden?
Wäre sehr super wenn mir jemand einen Tipp geben könnte.
Viele Dank im Voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
RSA - Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Mi 24.10.2012
Autor: felixf

Moin!

> Ich schreibe mein Seminararbeit über Primzahlen, darunter
> auch, als praktische Anwendung, ein Kapitel über das
> RSA-Verfahren. Nun habe ich versucht, dass RSA-Verfahren an
> einfachen Zahlen auszuprobieren. Doch ich komme bei der
> Berechnung des Dechiffrierschlüssels nicht weiter.
> Bisher habe ich gerechnet:
> zwei Primzahlen p = 7 und q = 11
>  daraus folgt n= p*q= 77 und phi(n) = 60
>  außerdem  a=8 festgelegt
>  verschlüsselt soll die zahl x= 12 werde
>  -> y= [mm]x^{a}[/mm] (mod n)  

> y= [mm]12^{8}[/mm] (mod 77)  
> y= 61
>  Stimmen meine Berechnungen bisher?

Nicht ganz: [mm] $12^8$ [/mm] modulo 77 ist 67 und nicht 61.

> nun soll der Dechiffrierschlüssel bestimmt werden mit:
> ab (mod m) = 1

So ein $b$ gibt es fuer gegebenes $a$ nur dann, wenn $a$ und $m$ teilerfremd sind. Das ist bei dir nicht der Fall, da 60 und 8 nicht teilerfremd sind. Das kannst du auch hier sehen:

>  b= [mm]\bruch{1+k*m}{a}[/mm]
>  b= [mm]\bruch{1+k*60}{8}[/mm]

Damit ist $b = [mm] \frac{1}{8} [/mm] + [mm] \frac{15 k}{2}$. [/mm] Dies kann aber fuer ganzzahliges $k$ niemals eine ganze Zahl werden, da der Nenner von [mm] $\frac{15 k}{2}$ [/mm] niemals 8 werden kann.

LG Felix


Bezug
                
Bezug
RSA - Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:13 Mi 24.10.2012
Autor: susiii

Danke für die schnelle Antwort!
Ich hab übersehen, dass a und m teilfremd sein müssen.
Aber jetzt habe ich's verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Krypto,Kodierungstheorie,Computeralgebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]