www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Nullstellenmenge
Nullstellenmenge < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 Fr 24.07.2009
Autor: Unk

Aufgabe
Geben Sie eine quadratische Form [mm] $q:\mathbb{R}^{2}\rightarrow\mathbb{R}$ [/mm]
an, sodass die Nullstellenmenge:

[mm] $\{x\in\mathbb{R}^{2}|q(x)=1\}$ [/mm] eine Ellipse (kein Kreis) bzw. eine
Hyperbel ist, und zwar soll eine der Hauptachsen die Ursprungsgerade
durch $(2,1)$ sein.

Hallo,

mir geht es hier nur um das allgemeine Vorgehen, deswegen betrachte ich der Einfachheit halber nur die Hyperbel.

Eine Hyperbel wäre folgendes: [mm] $X^{2}-Y^{2}-1\Rightarrow X^{2}-Y^{2}=1.$ [/mm]

Die entsprechende Matrix $A$ mit [mm] $(x,y)A\begin{pmatrix}x\\ y\end{pmatrix}-1=0$ [/mm] ist:

[mm] $A=\begin{pmatrix}1 & 0\\ 0 & -1\end{pmatrix}.$ [/mm]

Jetzt wollte ich mir eine orthogonale Matrix $Q$ bestimmen, die als
Spalte den normierten Vektor $(2,1)$ hat und als nächste Spalte den
normierten $(2,-1).$

Und dann berechnen: [mm] $Q^{-1}AQ=A'.$Und [/mm] hoffentlich erhalte ich meine
geforderte Form dann durch:

[mm] $(x,y)A'\begin{pmatrix}x\\ y\end{pmatrix}-1.$ [/mm] Geht das so oder muss man irgendwie anders vorgehen?

        
Bezug
Nullstellenmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Fr 24.07.2009
Autor: MathePower

Hallo Unk,

> Geben Sie eine quadratische Form
> [mm]q:\mathbb{R}^{2}\rightarrow\mathbb{R}[/mm]
>  an, sodass die Nullstellenmenge:
>  
> [mm]\{x\in\mathbb{R}^{2}|q(x)=1\}[/mm] eine Ellipse (kein Kreis)
> bzw. eine
>  Hyperbel ist, und zwar soll eine der Hauptachsen die
> Ursprungsgerade
>  durch [mm](2,1)[/mm] sein.
>  Hallo,
>  
> mir geht es hier nur um das allgemeine Vorgehen, deswegen
> betrachte ich der Einfachheit halber nur die Hyperbel.
>  
> Eine Hyperbel wäre folgendes: [mm]X^{2}-Y^{2}-1\Rightarrow X^{2}-Y^{2}=1.[/mm]
>  
> Die entsprechende Matrix $A$ mit [mm]$(x,y)A\begin{pmatrix}x\\ y\end{pmatrix}-1=0$[/mm] ist:
>  
> [mm]$A=\begin{pmatrix}1 & 0\\ 0 & -1\end{pmatrix}.$[/mm]
>  
> Jetzt wollte ich mir eine orthogonale Matrix [mm]Q[/mm] bestimmen,
> die als
>  Spalte den normierten Vektor [mm](2,1)[/mm] hat und als nächste
> Spalte den
>  normierten [mm](2,-1).[/mm]


Doch wohl eher [mm]\pmat{-1 \\ 2}[/mm].


>
> Und dann berechnen: [mm]Q^{-1}AQ=A'.[/mm]Und hoffentlich erhalte ich
> meine
>  geforderte Form dann durch:
>  
> [mm]$(x,y)A'\begin{pmatrix}x\\ y\end{pmatrix}-1.$[/mm] Geht das so oder muss man irgendwie
> anders vorgehen?


Die Vorgehensweise ist genau richtig.

Die quadratische Form schreibt sich so: [mm]\pmat{x & y}*B*\pmat{x \\ y}[/mm]

Läßt man jetzt eine Transformation [mm]\pmat{x \\ y}=S*\pmat{\tilde{x} \\ \tilde{y}}[/mm] darauf los, so ergicih die Matrix B' zu:

[mm]B'=S^{t}*B*S[/mm]

Diese Gleichung hast Du nun für B'=A und S=Q nach B umzustellen.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]