www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Matrix
Matrix < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix: nilpotente
Status: (Frage) beantwortet Status 
Datum: 16:13 So 09.01.2005
Autor: ThomasK

Hi

Ich hab hier eine Aufgabe:
A  [mm] \in [/mm] M(n;K) sei eine untere Dreiecksmatrix, deren Hauptdiagonale nur  aus Nullen besteht.
Zeigen Sie, das A Nilpotent ist.

Kurs gefasst also:
z.b. A =
[mm] \vmat{ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 } [/mm]

A² ist dann:

[mm] \vmat{ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 } [/mm]

und [mm] A^3 [/mm] ist die Nullmatrix und damit Nilpotent.

Reicht das wenn die Frage lautet, wir sollen es zeigen das A Nilptent ist?


        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 So 09.01.2005
Autor: DaMenge

hi - dies ist ein Doppelpost - welche Zielgruppe willst du denn nun ansprechen?

im Uni-LA habe ich bereits geantwortet...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]