www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Logarithmusgleichung
Logarithmusgleichung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmusgleichung: Lösen nach x
Status: (Frage) beantwortet Status 
Datum: 16:19 Di 20.11.2007
Autor: NetCowboy

Aufgabe
Löse nach x auf :

[mm] e^{x-1} [/mm] = [mm] e^x [/mm] -1

Als Lösung soll 1-ln(e-1) = 0,4587 rauskommen

Ich habe rumgerechnet und komme nicht auf diese Lösung.

Sofort ln draufhauen klappt nich , da man dabei durch 0 teilen würde :

[mm] e^{x-1} [/mm] = [mm] e^x [/mm] -1   | ln

x-1=x-ln 1    | ln u - ln v = ln [mm] \bruch{u}{v} [/mm] ; ln1 =0

substituieren klappt auch nich

also wie lautet hier der Ansatz ?

        
Bezug
Logarithmusgleichung: erst umstellen
Status: (Antwort) fertig Status 
Datum: 16:25 Di 20.11.2007
Autor: Loddar

Hallo NetCowboy!


Du wendest die MBLogarithmusgesetze falsch an. Zudem solltest Du hier erst umformen:

[mm] $$e^{x-1} [/mm] \  = \ [mm] e^x [/mm] -1$$
$$1 \ = \ [mm] e^x-e^{x-1} [/mm] \ = \ [mm] e^x*\left(1-e^{-1}\right) [/mm] \ = \ [mm] e^x*\left(1-\bruch{1}{e^1}\right) [/mm] \ = \ [mm] e^x*\bruch{e-1}{e}$$ [/mm]
[mm] $$\bruch{e}{e-1} [/mm] \ = \ [mm] e^x$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Logarithmusgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:38 Di 20.11.2007
Autor: NetCowboy

Danke!

Habs nich auf Anhieb gesehen =(

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]