www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Lineare Operatoren
Lineare Operatoren < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Operatoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Mo 22.10.2007
Autor: Fry

Hallo!

Hab mal ne Frage:
Gibt es einen lineraren Operator A: V->W mit normierten Räumen V,W,  der nicht beschränkt ist ? Weiß das jemand vielleicht ?

VG
Christian

        
Bezug
Lineare Operatoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Mo 22.10.2007
Autor: SEcki


>  Gibt es einen lineraren Operator A: V->W mit normierten
> Räumen V,W,  der nicht beschränkt ist ? Weiß das jemand
> vielleicht ?

Die Antwort ist: ja.

Hilfe zur Konstruktion: du kannst für V und W den gleichen Raum nehmen. Am besten nimm dann eine Basis, so dass alle Basiselemente auf 1 normeirt sind. Dann kannst du ja eine lineare Abbildung durch Bilder der Basis angeben. Hast du nun Ideen?

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]