www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kniffel 2er Pasch
Kniffel 2er Pasch < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kniffel 2er Pasch: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:26 Fr 14.01.2011
Autor: Tizian

Aufgabe
Berechnen Sie die Wahrscheinlichkeit dafür, dass beim Kniffel beim einmaligen Wurf der fünf Würfel ein Zweierpasch auftritt. (Hinweis: Der Ausgang sei nur positiv, wenn es sich genau um einen Zweierpasch handelt.)

Ich weiß, dass P=46,30% ist.
Lösungsweg:
1. Würfel -> 6 Möglichkeiten
2. Würfel -> 1 Möglichkeit (Paschzahl)
3. Würfel -> 5 Mgl.
4. Würfel -> 4 Mgl.
5. Würfel -> 3 Mgl.

Anzahl der Möglichkeiten der Kombinationen ist 10. (Durch Probieren, grafische Darstellung ermittelt.)

[mm] n=6^{5} [/mm]

[mm] P=\bruch{10*6*5*4*3}{6^{5}} [/mm]

In einigen Beiträge habe ich gesehen, dass man für die Anzahl der Möglichkeiten der Kombinationen 10 auch  [mm] \vektor{5\\ 3}. [/mm]
Ich sehe, dass die Terme gleich sind.
Kann mir jemand anschaulich erläutern, warum man [mm] \vektor{5\\ 3} [/mm] verwendet?

LG Tizian

ps/ Frage in keinem anderen Forum gestellt.

        
Bezug
Kniffel 2er Pasch: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Fr 14.01.2011
Autor: MathePower

Hallo Tizian,

> Berechnen Sie die Wahrscheinlichkeit dafür, dass beim
> Kniffel beim einmaligen Wurf der fünf Würfel ein
> Zweierpasch auftritt. (Hinweis: Der Ausgang sei nur
> positiv, wenn es sich genau um einen Zweierpasch handelt.)
>  Ich weiß, dass P=46,30% ist.
>  Lösungsweg:
> 1. Würfel -> 6 Möglichkeiten
>  2. Würfel -> 1 Möglichkeit (Paschzahl)

>  3. Würfel -> 5 Mgl.

>  4. Würfel -> 4 Mgl.

>  5. Würfel -> 3 Mgl.

>  
> Anzahl der Möglichkeiten der Kombinationen ist 10. (Durch
> Probieren, grafische Darstellung ermittelt.)
>  
> [mm]n=6^{5}[/mm]
>  
> [mm]P=\bruch{10*6*5*4*3}{6^{5}}[/mm]
>  
> In einigen Beiträge habe ich gesehen, dass man für die
> Anzahl der Möglichkeiten der Kombinationen 10 auch  
> [mm]\vektor{5\\ 3}.[/mm]
>  Ich sehe, dass die Terme gleich sind.
>  Kann mir jemand anschaulich erläutern, warum man
> [mm]\vektor{5\\ 3}[/mm] verwendet?


Da bei einem Zweier-Pasch zwei nur zwei gleiche Zahlen auftreten,
verwendet man normalerweise

[mm]\pmat{5\\2}[/mm]

Da der Binomialkoeffizient symmetrisch ist, d.h.

[mm]\pmat{n \\ k}=\pmat{n \\ n-k}[/mm]

kann man auch

[mm]\pmat{5\\3}[/mm]

verwenden.


>  
> LG Tizian
>  
> ps/ Frage in keinem anderen Forum gestellt.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]