www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Integral von f(x)=x*e^x
Status: (Frage) beantwortet Status 
Datum: 19:26 Mo 15.02.2010
Autor: dennisH.

Aufgabe
Bestimmtes Integral von f(x)= [mm] x*e^x [/mm] [-1;1]

Stammfunktion von [mm] e^x [/mm] ist [mm] e^x, [/mm] Stammfunktion von x ist [mm] 1/2x^2, [/mm] aber wie funktioniert das bei beiden in Kombination (Produkt)?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Mo 15.02.2010
Autor: MathePower

Hallo dennisH.,


[willkommenmr]


> Bestimmtes Integral von f(x)= [mm]x*e^x[/mm] [-1;1]
>  
> Stammfunktion von [mm]e^x[/mm] ist [mm]e^x,[/mm] Stammfunktion von x ist
> [mm]1/2x^2,[/mm] aber wie funktioniert das bei beiden in Kombination
> (Produkt)?


Das funktioniert mit der partiellen Integration.


>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruss
MathePower

Bezug
                
Bezug
Integralrechnung: Gelöst
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:06 Mo 15.02.2010
Autor: dennisH.

Vielen Dank für die schnelle Antwort und für den Tipp. Ich habe das Ergebnis herausbekommen: 2*e^-1


Gruß
Dennis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]