www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral von f(x) = 0
Integral von f(x) = 0 < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral von f(x) = 0: Übungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 14:23 Di 23.11.2010
Autor: Vilietha

Aufgabe
Sei f : [a, b] → R eine stetige Funktion mit  f ≥ 0 und [mm] \integral_{a}^{b}{f(x) dx=0}. [/mm] Zeigen Sie f = 0. Stimmt das auch, wenn f nur als Riemann-integrierbar vorausgesetzt wird?

Hallo zusammen,

Dass f null ist kann ich zeigen.
Ich vermute, dass dies auch stimmt, wenn f nur als Riemann integrierbar vorausgesetzt wird. Liege ich damit richtig, und wie beweist man dies am besten?

Ich freue mich auf Eure Antworten.

Viele Grüße,
Vilietha

        
Bezug
Integral von f(x) = 0: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Di 23.11.2010
Autor: fred97


> Sei f : [a, b] → R eine stetige Funktion mit  f ≥ 0 und
> [mm]\integral_{a}^{b}{f(x) dx=0}.[/mm] Zeigen Sie f = 0. Stimmt das
> auch, wenn f nur als Riemann-integrierbar vorausgesetzt
> wird?
>  Hallo zusammen,
>  
> Dass f null ist kann ich zeigen.
>  Ich vermute, dass dies auch stimmt, wenn f nur als Riemann
> integrierbar vorausgesetzt wird. Liege ich damit richtig,

Nein.


> und wie beweist man dies am besten?
>  
> Ich freue mich auf Eure Antworten.

Setze f(a)=1 und f(x)=0 für x [mm] \in [/mm] (a,b]

Warum ist f Riemannintegrierbar ?

Warum ist $ [mm] \integral_{a}^{b}{f(x) dx=0}. [/mm] $  ?

FRED

>  
> Viele Grüße,
>  Vilietha


Bezug
                
Bezug
Integral von f(x) = 0: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:01 Di 23.11.2010
Autor: Vilietha

Hallo FRED,

Vielen Dank für Deine Antwort.

Was Deine Beispielfunktion f betrifft, so ist sie integrierbar, weil sie nur einen unstetigen Punkt hat. Denn man kann die Fläche unter der Funktion unendlich klein machen bei dem Punkt a von dir. Das Integral über einen Punkt ist also 0, und somit ist das Integral über (a,b] das selbe wie über [a,b].

Ist es in Ordnung, wenn man so argumentiert?

Viele Grüße,
Vilietha

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]