www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Eigenwertprobleme" - Hessenberg
Hessenberg < Eigenwertprobleme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hessenberg: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:59 Do 01.04.2010
Autor: moerni

Hallo. Ich habe es noch nicht verstanden, wie ich eine Matrix auf obere Hessenberg-Gestalt transformieren kann. Meine bisherigen Ansätze:

Gegeben ist die Matrix [mm] A=\pmat{ 1 & 2 & 0 \\ 0 & 2 & 4 \\ 8 & 0 & 1 } [/mm]
Suche eine orthogonale Matrix Q, so dass [mm] QAQ^T [/mm] obere Hessenberg-Matrix ist. Suche [mm] \tilde{H_1} [/mm] (n-1)x(n-1) Householder Matrix mit [mm] \tilde{H_1}c [/mm] = [mm] \sigma e_1, [/mm] wobei [mm] c=(a_{21},a_{31})^T. [/mm]
Es ist [mm] \tilde{H_1}=I-2hh^T [/mm] mit ||h||=1. Einsetzen und umformen ergibt:
[mm] \frac{1}{2}(Ic-\sigma e_1)=hh^Tc. [/mm] Es sei [mm] h=(h_1,h_2)^T. [/mm] Dann ergibt sich durch einsetzen
[mm] \vektor{-\frac{1}{2} \sigma \\ 4}=\vektor{8h_1h_2 \\ 8h_2^2} [/mm]
Also [mm] 8h_2^2=4, h_2= \pm \sqrt{\frac{1}{2}}. [/mm]
Da ||h||=1 folgt [mm] 64h_1^2h_2^2 [/mm] + [mm] 64h_2^4 [/mm] = 1 [mm] \Rightarrow 32h_1^2+16=1 [/mm]
Widerspruch.
Was mache ich falsch? Kann mir jemand helfen?
Über eine Antwort wäre ich sehr dankbar.
moerni

        
Bezug
Hessenberg: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mo 05.04.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Eigenwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]