www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Grenzwertberechnung
Grenzwertberechnung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwertberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:42 Fr 20.05.2011
Autor: Veget90

Aufgabe
Es soll folgender Grenzwert gebildet werden. [mm]\limes_{n \to \infty} \bruch{27n}{\wurzel{500 + n^2}} [/mm]

Das Grenzwert müsste 27 sein. Dies müsste jedoch bewiesen werden.
Die einzige Idee, die mir gekommen ist, ist die Erweiterung mit der dritten binomischen Formel. Jedoch komme ich dann auch nicht weiter.




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Grenzwertberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:54 Fr 20.05.2011
Autor: kushkush

Hallo,


für $n>0$ gilt:

[mm] $\frac{27n}{\sqrt{500+n^{2}}}=\sqrt{\frac{27^{2}n^{2}}{500+n^{2}}}$ [/mm]



Gruss
kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]