www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mechanik" - Geschwindigkeit in Kugelkoord.
Geschwindigkeit in Kugelkoord. < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geschwindigkeit in Kugelkoord.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 So 06.12.2009
Autor: notinX

Aufgabe
Die Bahnkurve eine Massenpunktes ist in der Form [mm] $\mathbf{r}(t)=r(t)\mathbf{e}_{r}$ [/mm] in Kugelkoordinaten [mm] $(r,\theta,\varphi)$ [/mm] gegeben. Geben Sie Geschwindigkeit und Beschleunigung an.

In kartesichen Koordinaten sind die Einheitsvektoren zeitlich konstant, in Kugelkoordinaten nicht. Bedeutet das, ich muss den Einheitsvektor mit ableiten?

        
Bezug
Geschwindigkeit in Kugelkoord.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 So 06.12.2009
Autor: Kroni

Hi,

prinzipiell ja. Denn wenn du [mm] $\dot{\ver{r}}=\dot{r\vec{e_r}}$ [/mm] berechnest, dann musst du Produktregel anwenden und $r$ nach t ableiten und [mm] $\vec{e_r}$ [/mm] ebenfalls nach t ableiten.

Man kanns aber auch machen, wie []hier gut gezeigt.

LG

Kroni

Bezug
                
Bezug
Geschwindigkeit in Kugelkoord.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:47 So 06.12.2009
Autor: notinX

Alles klar, danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]