www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Gebrochenrationale e-Funktion
Gebrochenrationale e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gebrochenrationale e-Funktion: Wendepunkt
Status: (Frage) beantwortet Status 
Datum: 17:19 Do 20.11.2008
Autor: rantanplan91

Aufgabe
Stellen Sie die Gleichung der Wendetangente ta auf, die zum Graphen der Funktion fa gehört!

fa(x)= [mm] \bruch{a+x}{e^{x}} [/mm]

Moin Leute !
Schreibe morgen ma wieder eine Mathe-LK Klausur -.-'

Nun bin ich am lernen komme aber an der Wendetangente nicht ganz weiter.
Hab halt soweit gerechnet das ich jetzt nur noch nach b auflösen müsste kriegs aber nicht gepacken -.-

[mm] \bruch{2}{e^{2-a}} [/mm] = [mm] -\bruch{1}{e^{2-a}} \* [/mm] (2-a) + b

Wie rechne ich denn [mm] -\bruch{1}{e^{2-a}} \* [/mm] (2-a) ???

Kann mir einer weiterhelfen ?

Danke

MfG
Marc

        
Bezug
Gebrochenrationale e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Do 20.11.2008
Autor: zetamy

Hallo Marc,

Du musst nur den Term [mm] -\bruch{1}{e^{2-a}} \cdot (2-a) + b [/mm] auf die linke Seite bringen, also:
[mm]\bruch{2}{e^{2-a}} = -\bruch{1}{e^{2-a}} \cdot (2-a) + b[/mm] [mm] \Leftrightarrow[/mm] [mm] \bruch{2}{e^{2-a}}+\bruch{1}{e^{2-a}} \cdot (2-a)=b[/mm]

Da im Nenner die gleichen Ausdrücke stehen, kannst du das zusammenfassen zu:

[mm] \bruch{2+(2-a)}{e^{2-a}}=b[/mm] [mm] \Leftrightarrow[/mm] [mm] \bruch{(4-a)}{e^{2-a}}=b[/mm]

Grüße, zetamy


Bezug
                
Bezug
Gebrochenrationale e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:24 Do 20.11.2008
Autor: rantanplan91

boah vielen dank !

ich meine ich habs auch gesehen das die beiden die gleichen nenner haben aber ich wusste nichts damit anzufangen da mich diese (2-a) irgentwie gestört haben

danke danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]