www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Folgen
Folgen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Folgen: Tipp
Status: (Frage) für Interessierte Status 
Datum: 22:08 Mo 07.11.2005
Autor: Reute

Es sei eine Folge [mm] (an)_{n \in N} [/mm] von reellen Zahlen rekursiv definiert durch
[mm] a_{0} [/mm] := 1, [mm] a_{1} [/mm] := 2 und
[mm] a_{n} [/mm] := [mm] 3a_{n-1} [/mm] − [mm] \bruch{25}{4} a_{n-2} [/mm]

für n [mm] \ge [/mm] 2. Zeigen Sie, dass für alle n [mm] \in \IN [/mm] = (0,1,2,...) gilt

[mm] a_{n} [/mm] = Re ( (1- [mm] \bruch{1}{4} [/mm] i) ( [mm] \bruch{3}{2} [/mm] + [mm] 2i)^n) [/mm] ,

wobei i für imaginäre einheit und Re für den realteil steht!

Bitte helft mir ich habe es schon mit der Induktion versucht aber leider kommt bei mir da immer schrott heraus!!
Ach noch was, ist es richtig wenn es heißt: Bestimmen sie alle komplexen Zahlen, die konjugiert zu ihren Quadrat sind
[mm] \Rightarrow [/mm] z²= [mm] \overline{z}² [/mm]

        
Bezug
Folgen: Keine Doppelpostings!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:21 Di 08.11.2005
Autor: Loddar

Hallo Reute!


Bitte keine Doppelpostings hier innerhalb des MatheRaumes stellen! Danke.


Gruß
Loddar


Bezug
                
Bezug
Folgen: sorry
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:21 Di 08.11.2005
Autor: Reute

oh sorry kommt nicht mehr vor!! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]