www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Exponentialfkt, Konv.radius
Exponentialfkt, Konv.radius < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialfkt, Konv.radius: Klausurvorbereitung
Status: (Frage) beantwortet Status 
Datum: 12:31 Do 16.02.2006
Autor: DeusRa

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Begründen Sie, dass für alle positiven reellen Zahlen y gilt $exp(-y) \le 1$

So,
also meine Idee soweit, dass ich den Konvergenzradius berechnen muss um y \in \IR_+.
y \in \IR_+.

$exp(-y)= \summe_{n=0}^{\infty}\bruch{-y^{n}}{n!}$=
$\summe_{n=0}^{\infty}\bruch{(-1)^{n}*y^{n}}{n!}$=
$\summe_{n=0}^{\infty}(-1)^{n}*\bruch{y^{n}}{n!}$

Also muss ich doch jetzt zeigen, dass \bruch{y^{n}}{n!} monoton fallend ist, weil ja somit mit Leibnitz die Reihe konvergenz ist,
und dann sollte der Limes der Reihe den Konvergenzradius \le 1 ergeben.

Aber hier fehlt mir irgendwie ne Idee um das Ding vollständig zu lösen.

(i) (Monoton fallend) : a_n := \bruch{y^{n}}{n!}
zz: a_n+1 \le a_n \Rightarrow
\bruch{y^{n+1}}{(n+1)!} \le \bruch{y^{n}}{n!} \gdw
0\le \bruch{y^{n}*(n+1)}{y^{n}*y} \gwd
0\le \bruch{n+1}{y}, da n+1>0 und y \in \IR_+ folgt
a_n+1 \le a_n und somit monoton fallend für alle n.
Somit ist
$exp(-y)= \summe_{n=0}^{\infty}\bruch{-y^{n}}{n!}$< \infty

(ii) (Konvergenzradius \le 1) :
$1/R =  \limes_{n\rightarrow\infty}\wurzel[n]{|a_n|}$
=$\limes_{n\rightarrow\infty}\wurzel[n]{|\bruch{y^{n}}{n!}|}$=
$\limes_{n\rightarrow\infty} |\bruch{y}{ \wurzel[n]{n!}}|}$

So ab jetzt brauch ich Hilfe.
Wie zeigt man dass das \le 1.

        
Bezug
Exponentialfkt, Konv.radius: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Do 16.02.2006
Autor: mathiash

Hallo und guten Tag,

also ok, da scheint ein bißchen was kommentierungsbeduerftig an Deinem Ansatz:

Ich weiss nicht, was Du unter dem Begriff Konvergenzradius verstehst, aber das ist hier
wohl nicht passend, zumindest, wenn man die uebliche Begrifflichkeit anwendet.


Du sollst also aus der Reihendefinition


[mm] exp(y)\: =\: \sum_{n\geq 0\} \frac{y^n}{n!} [/mm]

herleiten, daß für alle y [mm] \geq [/mm] 0   [mm] exp(-y)\leq [/mm] 1 gilt.

Fuer solche y gilt ja

exp(-y)=  1 [mm] \: -\: \frac{y}{1}\: +\: \frac{y^2}{2}\:\: -\frac{y^3}{6}\: +\ldots [/mm]

Zweifelsohne sieht man doch aus der Reihendefinition sofort

exp(0)=1.

Nun reicht es doch zu zeigen, dass die Funktion monoton steigend ist, oder ?

Den Beweis findest Du zB hier: http://de.wikipedia.org/wiki/E-Funktion.

Viele Gruesse,

Mathias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]