www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Determinante
Determinante < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante: Beweis Determinante
Status: (Frage) beantwortet Status 
Datum: 21:41 Sa 30.01.2010
Autor: nenas

Aufgabe
Sei n [mm] \ge [/mm] 2. Man zeige, daß die n [mm] \times [/mm] n-Matrix
                  [mm] M_{n}:= \pmat{ 1 & 1 & 1 & ... & 1\\ 0 & 1 & 1 & ... & 1 \\1 & 0 & 1 & ... & 1\\&& . &\\&& . &\\&& . &\\1 & 1 & 1 ... & 0 & 1} [/mm]
die Determinante 1 besitzt.

Ich sitze schon seit Stunden an dieser Aufgabe und komme einfach nicht auf die Lösung. Kann mir bitte irgendjemand helfen, ich bin am verzweifeln!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Determinante: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Sa 30.01.2010
Autor: abakus


> Sei n [mm]\ge[/mm] 2. Man zeige, daß die n [mm]\times[/mm] n-Matrix
>                    [mm]M_{n}:= \pmat{ 1 & 1 & 1 & ... & 1\\ 0 & 1 & 1 & ... & 1 \\1 & 0 & 1 & ... & 1\\&& . &\\&& . &\\&& . &\\1 & 1 & 1 ... & 0 & 1}[/mm]
>  
> die Determinante 1 besitzt.

Hallo,
du solltest durch einige erlaubte Operationen so umformen, dass in der Hauptdiagonale nur Einsen stehen und alles andere Null wird.
Gruß Abakus

>  Ich sitze schon seit Stunden an dieser Aufgabe und komme
> einfach nicht auf die Lösung. Kann mir bitte irgendjemand
> helfen, ich bin am verzweifeln!
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]