www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Argumentenprinzip
Argumentenprinzip < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Argumentenprinzip: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:23 Sa 09.01.2016
Autor: lucaszester

Aufgabe
Gegeben seien zwei einfach zusammenhaengende, beschraenkte und glatt berandete Gebiete D und D* mit den Raendern C und C*. Zeigen Sie: Ist die Funktion f holomorph auf einem Gebiet G [mm] \supset [/mm] D und bildet f den Rand C bijektiv auf den Rand C* ab bei Erhaltung der Durchlaufungsrichtung, so ist f : D [mm] \to [/mm] D* eine holomorphe Bijektion.

Hallo.
Könnte mir jemand bei der folgenden Aufgabe helfen . Hatte überlegt es über das Argumentenprinzip zu machen. Weiß aber nicht so richtig wie. Wäre net wenn mir jemand helfen könnte.
LG lz.

        
Bezug
Argumentenprinzip: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 13.01.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]