www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Physik
  Status HochschulPhysik
  Status SchulPhysik
  Status Physik-Vorkurse
    Status VK 31: Physik Mittel
  Status Atom- und Kernphysik
  Status Elektrik
  Status Mechanik
  Status Optik
  Status Thermodynamik

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Ableitung
Ableitung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Di 23.11.2010
Autor: fagottator

Aufgabe
Es sei [mm] \phi_k [/mm] = [mm] \bruch{k!}{(2k)!} \bruch{d^k}{dx^k} (x^2-1)^k [/mm] , k= 0,...,n

Zeigen Sie:

(i) [mm] {\phi_k}_k [/mm] sind bezüglich des euklidischen oder [mm] L^2-Skalarprodukts, [/mm] (f,g) = [mm] \integral_I{f(x)g(x) dx} [/mm] über I = [-1,1] orthogonal.

Hallo zusammen!

Zuallererst stellt sich mir die Frage, was mit [mm] \bruch{d^k}{dx^k}(x^2-1)^k [/mm] gemeint ist. Soll das die k-te Ableitung von [mm] (x^2-1)^k [/mm] bedeuten? Wenn ja, wie kann ich das in meiner Aufgabe benutzen?

Bisher habe ich leider nur:

[mm] <\phi_k,\phi_n> [/mm] = [mm] <\bruch{k!}{(2k)!} \bruch{d^k}{dx^k} (x^2-1)^k,\bruch{n!}{(2n)!} \bruch{d^n}{dx^n} (x^2-1)^n> [/mm] = [mm] \bruch{k!}{(2k)!} \cdot \bruch{n!}{(2n)!}<\bruch{d^k}{dx^k} (x^2-1)^k, \bruch{d^n}{dx^n} (x^2-1)^n> [/mm]

        
Bezug
Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:00 Mi 24.11.2010
Autor: fred97


> Es sei [mm]\phi_k[/mm] = [mm]\bruch{k!}{(2k)!} \bruch{d^k}{dx^k} (x^2-1)^k[/mm]
> , k= 0,...,n
>  
> Zeigen Sie:
>  
> (i) [mm]{\phi_k}_k[/mm] sind bezüglich des euklidischen oder
> [mm]L^2-Skalarprodukts,[/mm] (f,g) = [mm]\integral_I{f(x)g(x) dx}[/mm] über
> I = [-1,1] orthogonal.
>  Hallo zusammen!
>  
> Zuallererst stellt sich mir die Frage, was mit
> [mm]\bruch{d^k}{dx^k}(x^2-1)^k[/mm] gemeint ist. Soll das die k-te
> Ableitung von [mm](x^2-1)^k[/mm] bedeuten?


Ja

> Wenn ja, wie kann ich das
> in meiner Aufgabe benutzen?


Die Polynome [mm] \phi_n [/mm] nennt man Legendresche Polynome.

Besorg Dir das Buch

             H.Heuser, Gewöhnliche Differentialgleichungen.

Dort findest Du ab Seite 272  eine Fülle  von Eigenschaften dieser Polynome


FRED

>  
> Bisher habe ich leider nur:
>  
> [mm]<\phi_k,\phi_n>[/mm] = [mm]<\bruch{k!}{(2k)!} \bruch{d^k}{dx^k} (x^2-1)^k,\bruch{n!}{(2n)!} \bruch{d^n}{dx^n} (x^2-1)^n>[/mm]
> = [mm]\bruch{k!}{(2k)!} \cdot \bruch{n!}{(2n)!}<\bruch{d^k}{dx^k} (x^2-1)^k, \bruch{d^n}{dx^n} (x^2-1)^n>[/mm]
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.physikraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]